Numerical Solution of Nonlinear Fin Problems via Initial Value Method
نویسنده
چکیده
In general the mathematical model for steady, one-dimensional conduction in fins appears as a nonlinear, two-point boundaryvalue problem. The nonlinearities arise due to radiative surface heat transfer, temperature dependent thermal conductivity or heat transfer coefficient etc. [i]. Often in such cases a numerical solution has to be obtained. Examining the literature reporting such solutions it appears that the most commonly used numerical scheme is based on a standard shooting technique in which a succession of guessed values of the missing initial derivative are used until the solution which satisfies the specified boundary condition at the other end is obtained. The disadvantages of this iterative process are long computing time, sensitivity of the solution to guessed initial condition and occasional lack of convergence. With the development of method of transformation groups, it has been possible, in some problems, to overcome these difficulties. The method transforms a boundary value problem into an initial value problem which can then be integrated in one
منابع مشابه
The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems
In this paper, we propose a modification of the second order method introduced in [Q. Li and X. Y. Wu, A two-step explicit $P$-stable method for solving second order initial value problems, textit{Appl. Math. Comput.} {138} (2003), no. 2-3, 435--442] for the numerical solution of IVPs for second order ODEs. The numerical results obtained by the new method for some...
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002